Summary of Research on Reliability Criteria-Based Flight System Control

N. Eva Wu
Department of Electrical Engineering
Binghamton University
Binghamton, NY 13902-6000
607-777-4375, evawu@binghamton.edu

Cooperative Agreement: NCC-1-336.

Tech POC: Dr. Christine Belcastro, NASA Langley. Support period: February 1, 1999-January 31, 2002.

March 2002

N.Eva Wu

.

Outline

- Overview of project focuses
- Reliability analysis
 - Role of reliability analysis in AvSP
 - Contributions
 - Some remarks
 - Challenges
- Design for reliability
 - Design issues
 - Contributions
 - Cost constrained reliability allocation(recent work)
 - Some thoughts on future research

Overview of Project Focuses

- Develop methods and select tools for reliability assessment of adaptive flight control systems
- Develop methods for modeling the controlled flight system recovery process and evaluating the likelihood of success
- Develop integrated adaptive control synthesis methods based on reliability criteria

March 2002 N.Eva Wu 3

Reliability Analysis

- Role of reliability analysis in AvSP
 - Identify and quantify the needs for aviation safety enhancement
 - Specify the safety goals and measures
 - Set an all encompassing criterion and guidelines for integrated system designs
 - Provide tools for validation and verification of modified and new designs aimed at reliability enhancement
 - Bottom line
 - > Establish measures through scientific means that are convincing to ourselves and others on what needs to be and has been accomplished

- Contributions
 - Surveyed reliability assessment tools and selected candidate tools to be used for AvSP
 - > Software tools: http://www.enre.umd.edu/tool.htm
 - > Rationale for the selection of SURE & ASSIST (summer'99 report)
 - ◆ Handle complex reconfiguration strategies with simple reliability models (no reason for complex models due to lack of data)
 - ◆ Provide accuracy for disparate failure and recovery rates
 - ♦ Have flexibility to allow incorporation of decision risk factors
 - ◆ Require a thorough understanding of failure and recovery processes
 - > Possible improvement: more user friendly interface
 - ◆ Suggest that AvSP support such an endeavor if Ricky is willing (SURE is of very high quality and unique work)

March 2002 N.Eva Wu 5

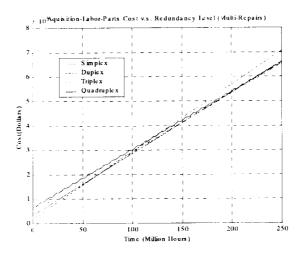
Reliability Analysis

- Contributions (cont'd)
 - > Systems to which SURE & ASSIST are applied
 - ◆ A flight control system (to apepar ACC'02)
 - » Sensitivity analysis w.r.t. hazard rate, redundancy level, coverage, removal rate using SURE
 - **◆** An industrial process
 - > Lessons learnt
 - ◆ Functional redundancy can greatly enhance system reliability
 - ◆ But the benefit can be severely compromised by inadequate coverage
 - ◆ Adequate coverage: 1-coverage hazard rate
 - > Some recommendations
 - ◆ Some hardware redundancy can be reduced
 - ◆ A focused effort to enhance coverage is needed

- Contributions (cont'd)
 - Incorporated decision risk factors brought in by added safety enhancement features through the notion of coverage
 - > Characteristics of coverage
 - ♦ Often dominating the overall system reliability
 - **◆** Difficult to model
 - ♦ Highly scenario dependent
 - ◆ Highly time dependent
 - > An example of coverage estimate: acc'00 paper
 - > Propose similar criteria set for all new designs and new systems aimed at safety enhancement

March 2002 N.Eva Wu 7

Reliability Analysis

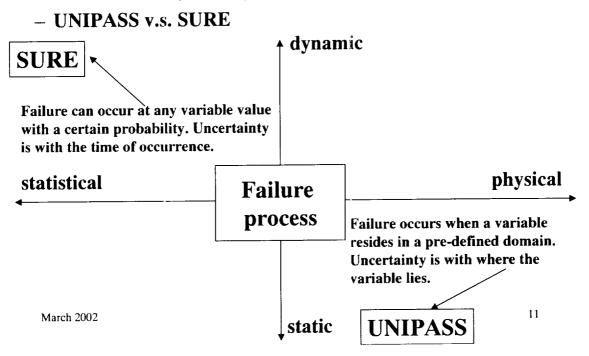

- Contributions (cont'd)
 - Exploited conditions peculiar to AvSP applications and derived a number of bounding relations that provide insight and simplifications to reliability analysis
 - Examples of results
 - : hazard rate of a subsystem (10⁻⁶~10⁻⁴ hour⁻¹)
 - : maximum MTTR of a faulty subsystem (10⁻⁴~10⁻³ hour)
 - lacktriangleT: mission time (10°~10¹ hour)
 - ♦k-out-of-n: k operational out of n parallel configuration

 - > P n T(1-c₀) if n T<<1, and

$$1 c_0 = \frac{(n-1) [(1-T)^n 1] [(1-T)^n (1-nT)]}{n T(1-nT)2}$$

 \rightarrow MTTR can be ignored if (1-c₀)>> n

- Contributions (cont'd)
 - A preliminary study on economic considerations
 - > Suggest that AvSP support the development and test of the study
 - > Propose to develop cost analysis for need-based maintenance


March 2002

9

Reliability Analysis

- Contributions (cont'd)
 - Investigated applicability of UNIPASS in AvSP (summer'01 report)
 - Failure probability analysis for components (known LSF & JPDF)
 - ♦ Good prediction when component LSFs have small uncertainties
 - ♦ Help dynamic reliability modeling through covariate methods
 - ◆ Provide useful information for feedback control (Sean Kenny)
 - > Identify needs and the potential for component reliability enhancement
 - **♦** Sensitivity analysis
 - **➤** Difficulties
 - **◆** Joint probability distribution model for components
 - **◆Randomized limit state treatment**

• Contributions (cont'd)

Reliability Analysis

Challenges

- Test data crucial to reliability study but sensitive from market-competition & liability viewpoints are difficult to obtain, while accident data alone are not sufficient (propose to partially mitigate data deficiency through control)
- New reliability measure/assessment tools that can provide more accurate information under less stringent data requirements are yet to be defined/developed (propose to use imprecise probabilities)
- Lack of existing tools for fault coverage modeling and decision risk assessment for aviation safety (a solution obtained, but not yet tested on a real system)

Design issues

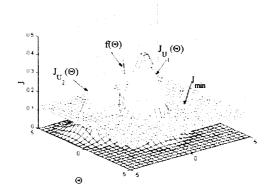
- Make use of existing redundancy
 - > Secondary functions
 - > Projections
 - > Virtual variables
- Ongoing effort
 - > Diagnosis and monitoring
 - > Fault tolerant control
- Recent effort
 - > Reliability allocation

March 2002 N.Eva Wu 13

Design for Reliability

Contributions

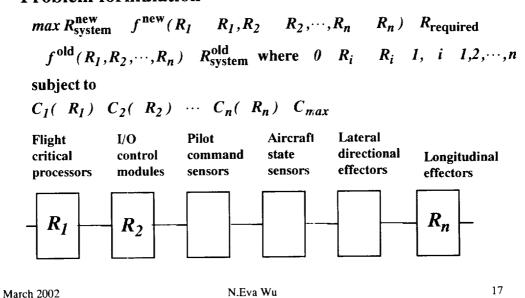
- System monitoring and diagnosis
 - > Developed an adaptive parameter estimation algorithm that has been tested on a nonlinear vehicle model for identification of additive, multiplicative, and incipient faults (IJACSP, 2000)
 - > Proposed a pulse compression method for system monitoring (ACC, 2001)
 - > Introduced diagnostic resolution as a measure for the performance of diagnostic systems, through which a functional relation to system reliability is established (IJSS, 2000)
 - > Defined a redundancy measure that quantifies the extent the redundancy can be utilized for failure recovery through feedback control (Automatica, 2000)


March 2002 N.Eva Wu 14

- Contributions (cont'd)
 - Fault tolerant control
 - ➤ A proof of concept fault-tolerant control was performed using a linear parameter varying model scheduled with respect to fault effects and a polytopic control method (DASC, 2000)
 - > A multiple channel configuration using a decentralized adaptive control approach to fault tolerance was proposed and an initial design was attempted on the 6 DOF nonlinear aircraft model (SafeProcess, 2000)
 - > A quantitative relation was established between the control performance and the overall system reliability through fault coverage (LJSS, 2000)
 - > Concepts of dynamic coverage, crucial for on-line decision making, and static coverage, crucial for reliability assessment and for specifying subsystem performance, were introduced (CDC, 2001)

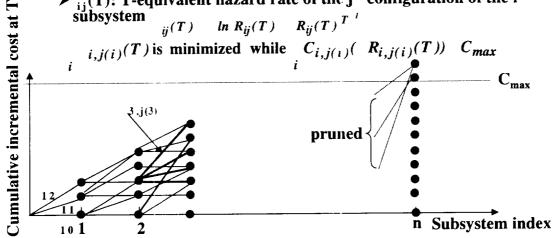
March 2002 N.Eva Wu 15

Design for Reliability


- Contributions
 - Definition of coverage $C_{U_i} = f(\cdot)d$, $i = \{J_{U_i}(\cdot), J_{min}\}$
 - Some recent results (CDC, 2001)
 - > A more robust control law results in a higher coverage
 - > A higher resolution diagnostic scheme results in a higher coverage
 - > A less stringent control performance requirement results in a higher coverage
 - A proof of concept design for HIMAT under the max coverage criterion
 - > Propose to perform an evaluation for the NASA B757

March 2002 N.Eva Wu

Reliability allocation


Problem formulation

Design for Reliability

- Solution to reliability allocation via constrained optimization
 - > n subsystems
 - > m; configurations for subsystem i

 - $R_{i,j}(T)$: reliability of the jth configuration of the ith subsystem at T $i_{j}(T)$: T-equivalent hazard rate of the jth configuration of the ith sűbsystem

> propose to perform an RR study for the NASA B757 N.Eva Wu

18

- Some thoughts on future research (cont'd)
 - All reported results should be tested on a realistic test-bed or a realistic set of aircraft data selected for AvSP for verification and demonstration of methods
 - Reliability analysis based on imprecise probability
 - ➤ Needs
 - **♦** lack of sufficient statistics
 - ◆ lack of precision and consistency in expert opinion
 - ◆ large uncertainty in pilots' decisions
 - > Issues
 - ◆ uncertainty description, arithmetic, measure, and principles
 - rule of combination
 - robustness

March 2002 N.Eva Wu 19

Design for Reliability

- Some thoughts on future research (cont'd)
 - Global control reconfigurability for non-analytic models
 - > Control reconfigurability?
 - ♦ Ability of vehicle to allow restoration of stability through feedback control
 - Needs
 - ♦ Reveal potentiality and limitation of feedback control, system condition criticality, subsystem dependency, ..., so that vehicle recoverability can be fully exploited and loss of vehicle control can be prevented
 - > Feasibility
 - ♦ Low fidelity and incomplete data can allow assessment of reconfigurability
 - > Issues
 - ◆ Locality (domain expansion)
 - ♦ Singularity (gap-metric based approximation)
 - ◆ Directionality (mode specific reconfigurability)
 - ◆ Computability (convex optimization)
 - New adaptive control strategies

(initial work submitted to GNC'02 in collaboration with Shin and Belcastro)